

FLORIDATECH eRD108 R&D program: Development of Cylindrical MPGDs

Two very distinct motivations for cylindrical MPGD R&D for EIC detector:

- a single cylindrical µRWELL layer directly in front of (and behind) the DIRC subdetector
 - ❖ Provide precise directional information to help seed the DIRC Cherenkov ring reconstruction
 - Tracking layer needed in all 3 EIC detector concepts (ECCE, CORE & ATHENA-all-Si)
 - Less stringent requirement for low mass detector (thickness > 0.5% r.l. is OK)
- several cylindrical Micromegas (MM) detector layers to create a central barrel tracker
 - This is a MPGD of choice for the **ATHENA-Hybrid Tracking** subdetector in the barrel region
 - Development of low mass detector (< 0.5% r.l.) is critical.

❖ Different applications & different R&D focus

- We want to emphasize that our R&D program targets two different applications for these two subdetectors
- The R&D focus mean that the two technologies are not to be considered interchangeable
- Both R&D projects share common goal for development / optimization of 2D readout patterns for MPGDs.

Development of Cylindrical µRWELL Tracker for the DIRC

Motivation:

- Impact position and directional information needed to seed the DIRC ring reconstruction.
 - ❖ Cylindrical µRWELL is the technology of choice as tracking layer in front of the DIRC
 - ❖ Aim at 1 mrad resolution at DIRC entrance point combined with central tracker
- Tracking layer required for all 3 current EIC detectors (ECCE, ATHENA all-Si & CORE)

Objectives:

- ❖ Demonstrate with a small prototype that cylindrical µRWELL can be built and operated
- R&D Plans for FY2022 & FY2023:
 - ❖ Design and fabrication of the mechanics of the cylindrical µRWELL prototype (FY2022)
 - ❖ Design and procurement of the µRWELL amplification & readout composite foil (FY2022)
 - ❖ Acquisition of small size VMM3a-SRS readout electronic (FY2022)
 - Characterization of the prototype with X-Ray at BNL and in beam at FNAL (2023)
- ❖ Institutions involved in Cylindrical µRWELL for DIRC:
 - ❖ FIT: Mechanical structure of the cylindrical µRWELL
 - ❖ UVa: µRWELL amplification & capacitive-sharing 2D strip readout
 - ❖ BNL: µRWELL amplification & 2D zigzag readout structure
 - ❖ TU: VMM3a-SRS readout for cylindrical µRWELL prototype

❖ Budget Request for Cylindrical µRWELL

This a combined funding request from BNL, FIT, TU & UVa for Cylindrical µRWELL

- FY2022: \$157,305
- ***** FY2023: **\$180,425**

Cylindrical µRWELL: R&D @ UVa

❖ Develop the composite µRWELL readout foil:

- Design of composite µRWELL readout foil collaboration with FIT, TU & BNL.
- Combines μRWELL amplification device with capacitive-sharing 2D strip readout structure (1mm - 2 mm pitch) into single μRWELL readout foil.
- Explore "diagonal, 90-degree, U-V" strip or CLAS12 MVT C-Z strip configuration for the cylindrical geometry.
- Procure the parts from CERN and perform initial quality control test before assembly into cylindrical mechanical at FIT
- Participate in the joint beam test of the prototype at BNL & FNAL in 2023

Person-power required and available

- FY2022: UVa Research Scientist (K. Gnanvo, unfunded),
 UVa graduate student (TBD, 25% FTE)
- FY2023: UVa Research Scientist (K. Gnanvo, unfunded),
 UVa graduate student (TBD, 25% FTE)

Concept of capacitive-sharing strip readout

UVa Budget Table

UVa BUDGET DRAFT FY22	Cyl. uRWELL	Forward Tracker
	\$15,000	\$0
Travel	\$3,000	\$2,000
Materials	\$14,000	\$10,000
overhad (26%)	\$3,640	\$2,600
TOTAL	\$35,640	\$12,600
UVa BUDGET DRAFT FY23	Cyl. uRWELL	Forward Tracker
Graduate students	\$15,000	\$15,000
Travel	\$5,000	\$5,000
Materials	\$3,000	\$3,000
overhad (26%)	\$760	\$760
TOTAL	\$23,760	\$23,760

Cylindrical µRWELL: R&D @ BNL

❖ Develop the composite µRWELL readout foil:

- Design of the µRWELL composite readout flex PCB in collaboration with CERN, FIT, TU and UVa
- Develop large scale charge-sharing 2D zigzag strip (pad) layout with
 1.5 2.0 mm pitch for μRWELL readout foil
- Perform X-ray stand characterization of the devices at BNL
- Participate in the joint beam test at FNAL in summer 2023

Small scale chamber characterized with X-ray gun:

- A single chemically etched kapton foil (CERN); quadruple GEM
- Spatial resolution for 1.5 mm pitch: ~70 μm in U&V at once
- Differential non-linearity <50 μm</p>

Person-power available part time

❖ BNL NPP Staff: B. Azmoun, A.Kiselev, M. Purschke, C. Woody

BNL eRD108 Budget table

BNL BUDGET DRAFT	FY22	FY23
Materials (uRwell board)	\$5,000	
Technical support	\$5,000	\$4,000
Travel (beam test in FY23)	\$2,000	\$7,000
TOTAL CORE COSTS	\$12,000	\$11,000

Cylindrical µRWELL: R&D @ FIT

Design and fabrication of the mechanical support structure

- Design of mechanical structure in collaboration with BNL, TU & UVa.
- Investigate carbon fiber prepreg (CF) material for rigid but light support structure
- Drift cathode foil mounted in the inner side of a second concentric CF cylinder
 - Minimization of drift cathode support material
- ❖ Fabrication of the support structure and assembly of µRWELL readout foil (2022)
- ❖ Participate in the joint beam test campaign of the prototype at BNL & FNAL (2023)

Person-power required and available

- FY2022: Faculty (M. Hohlmann, unfunded), FIT graduate student (Pietro Iapozzuto, 75% FTE).
- FY2023: Faculty (M. Hohlmann, unfunded), FIT graduate student (Pietro Iapozzuto, 75% FTE).

FIT eRD108 Budget table

FIT BUDGET DRAFT FY22	Request	Forward	uRWELL	v4 9/9/21
Graduate students	\$32,000	\$8,000	\$24,000	Total
	\$10,000	\$0	\$10,000	Pietro S22
	\$10,000	\$5,000	\$5,000	Merrick S22
	\$6,000	\$0	\$6,000	Pietro Sum 22
	\$6,000	\$3,000	\$3,000	Merrick Sum 22
Undergraduate students (1)	\$3,000	\$0	\$3,000	Sum 22
Travel	\$2,000	\$0	\$2,000	
Materials	\$8,500	\$500	\$8,000	
IDC base (Stud. & travel & mat.)	\$45,500	\$8,500	\$37,000	
IDC	\$20,415.85	\$3,813.95	\$16,601.90	
TOTAL	\$65,916	\$12,314	\$53,602	
FIT BUDGET DRAFT FY23	Request	Forward	uRWELL	T-4-I
FIT BUDGET DRAFT FY23	Request	Forward	uRWELL	
Graduate students	\$52,000	\$26,000	\$26,000	
	\$10,000	\$0		Pietro F22
	\$10,000	\$0		Pietro S23
	\$10,000	\$10,000		Merrick F22
	\$10,000	\$10,000		Merrick S23
	\$6,000	\$0		Pietro Sum 23
	\$6,000	\$6,000	\$0	Merrick Sum 23
Undergraduate students (1)	\$0	\$0	\$0	Sum 23
Travel	\$9,000	\$0	\$9,000	
Materials	\$2,500	\$500	\$2,000	
IDC base (Stud. & travel & mat.)	\$63,500	\$26,500	\$37,000	
IDC	\$28,492.45	\$11,890.55	\$16,601.90	
TOTAL	\$91,992	\$38,391	\$53,602	

Cylindrical µRWELL: R&D @ TU

Design and commissioning of small scale VMM-SRS electronics and DAQ system

- ❖ Move beyond APV ASIC (no longer produced) to VMM ASIC which has attractive characteristics for µRWELL cylindrical tracker
- Collaborate with BNL, FIT & UVa as well as RD51 @ CERN to become trained and gain expertise in VMM-SRS
- Use VMM-SRS electronics already in hand (via UVa eRD6 purchase) to commission a small-scale system (2022)
- Procure and commission large scale VMM-SRS DAQ system to readout cylindrical μRWELL prototype (2023)
- ❖ Participate in the joint beam test campaign of the prototype at BNL & FNAL (2023)

Person-power required and available

- FY2022: TU Research Scientist (M. Posik, unfunded), TU postdoc (50% FTE).
- FY2023: TU Research Scientist (M. Posik, unfunded), TU postdoc (50% FTE)

TU eRD108 Budget table

TU BUDGET DRAFT (FY22)	Percentage	Request
Postdoc (TBD)	50.00%	\$28,184
Fringe Benifit		\$7,187
Total Personal		\$35,371
Travel		\$0
Materials		\$0
Equipment		\$0
Total (Personal. & travel & mat.)		\$35,371
Overhead		\$20,692
TOTAL		\$56,063
TU BUDGET DRAFT (FY23)	Percentage	Request
Postdoc	50.00%	\$28,184
Fringe Benifit		\$7,187
Total Personal		\$35,371
Travel		\$6,000
Materials		\$0
Equipment		\$30,000
Total (Personal. & travel & mat.)		\$41,371
Overhead		\$20,692
TOTAL		\$92,063

R&D on cylindrical Micromegas tracker

Motivation

- Build a full (no acceptance gaps) light-weight modular Micromegas barrel tracker to complement the silicon vertex detector
- Take the existing tech from CLAS12 and uprgrade it to be:
 - **Simpler construction** (i.e. one PCB to rule them all)
 - 2D readout (resistive strip stack or 2D zigzag)
 - Even lighter (from ~0.4%X0 to as low as 0.07%X0)

Objectives

- FY22:
 - Optimization of the 2D readout to reach resolutions of ~150um with the fewest possible number of channels on small prototypes
 - CAD design of the full-scale prototype
 - Build and test small demonstrators for ultra-low-X0 solutions
- FY23:
 - Build a full scale prototype of a Micromegas tile (50x70cm²) with the chosen 2D readout and test it

Involved institutions

- CEA-Saclay: 2D readout design, bulking and building, cosmics and beam testing
- BNL: 2D zigzag readout design, X-Ray and beam testing

Budget request

- FY22: \$36,000 (Saclay + BNL)
- FY23: \$43,500 (Saclay + BNL)

Micromegas tracker configuration

Current estimates:

- 2 layer at $r \sim 50$ cm with 2x9 tiles
- 2 layer at $r \sim 80$ cm with 4x12 tiles

Total ~ 124 tiles = ~ 40 m² RO: pitch 1 mm = $\sim 100,000$ channels

2D Multi stack @ Saclay

Make resistive Amplification Kapton (AK)

- Diff. resistive value, strip shape
- Strait & Zigzag strip, Plain surface
- Diff. "grounding" with wasp waist
 In house serigraphy ~ 9 pattern /screen
 In house bulk with 4 pattern / mesh

Detector RD4

Active area on 10x10 cm²

Kapton of 20x20 cm² 128 channel, Floating mesh

Use of different Readout Kapton (RK)

- Diff. strip pitch
- Strait strip, Zigzag strip, pixel,...
- Max 128 channel
- Purchase Kapton 4 patterns / foil
- Flexibility to integrate third party RK

AK RK1 RK2

-1---1---1---1---1--

Assembly of different AK + RK1 + RK2

- One AK and two RK at 90°
- Diff. combination of AK & RK stack
- Low capacitance stack search
- In house press with frame
- In house <u>full</u> 3D mechanics

Characterization in FY22

55Fe & Cosmic bench in Saclay with DREAM FEE

RK

- Shipment to BNL for test with X-Ray gun
- Beam test at FNAL

AK	
RK1	
RK2	

Saclay BUDGET DRAFT FY22 – 2D readout	Request
Materials: Readout Kapton, bulk and mechanics	\$12 000
Travel: Beam test at FNAL	\$4 000
Total	\$16 000
Saclay BUDGET DRAFT FY23	Request
Materials: Construction of a full scale prototype	\$32 000
Travel: Beam test	\$4 000
Total	\$36 000

R&D on ultra low X0 (remove FR4, Stainless Steel, Cu)

Goal: **reach as low as 0.07% of X0**. Technology of interest not only for barrel applications

Ongoing

- Bulk on resistive kapton layer (no FR4): AK (Amplification Kapton)
 - Already tested on 25x25 cm²
 - large seize (50x50 cm²): Kapton with resistive layer
 - Kapton bulked on mesh, then glued on frame
 - Possibility to press in house Kapton readout under
- FY22
 - Aluminum thin mesh (no Stainless Steel)
 - Lasea (www.lasea.eu/en/) laser machine manufacturer with R&D lab.
 - 5 k€ quotation for drilling of sample (Al 5 to 20 μm, Cu, ...) in FY 21
 - Small 10x10 active area mesh for bulk in FY22
 - Explore machine for large surface FY23
- FY23
 - Aluminum metalized strip on Kapton/mylar for readout (No Cu)
 - Research for company
 - Test of material on KA with R&D on Al-Cu signal connection.

Saclay BUDGET DRAFT FY22 - Ultra Low X0	Request
Materials: Purchase of thin Al mesh	\$5 000
Total	\$5 000
Saclay BUDGET DRAFT FY23 - Ultra Low X0	Request
Materials: Mesh and metalised strips	\$10 000
Total	\$10 000

10 µm Al Laser mesh

2D zigzag for μMegas @ BNL

FY22 activities

- Design a set of kapton-based 2D zigzag charge sharing readout boards matching Saclay prototype mechanics and interconnect
- Perform prototype characterization with X-ray gun at BNL
- Participate in a joint beam test at FNAL in spring 2022

BNL eRD108 Budget table

BNL BUDGET DRAFT	FY22	FY23
Materials (uMegas boards)	\$6,000	
Technical support	\$5,000	\$4,000
Travel (beam test)	\$7,000	
TOTAL CORE COSTS	\$18,000	\$4,000

Low material budget, low channel count, high 2D spatial resolution

The technique must be scalable (kapton chemical etching) and is equally applicable to GEM / μRWELL / μMegas

Need further R&D for EIC Forward Tracker

Motivation:

- eRD6 was generic R&D for development of low mass GEM (< 0.5% r.l.)</p>
 - R&D program was completed & successful with 2 large GEM prototypes built and tested in beam at FNAL (Florida Tech and UVa)
 - Focus on low mass in active area **but not** on the detector support structures.
- Simulation ATHENA-Hybrid detector shows the need to minimize the planar MPGD detector frames in end cap regions

Objectives & target of the R&D:

- ❖ Investigate materials to minimize thickness and width while maintaining robustness for GEM support frame
- ❖ Develop planar µRWELL detector as alternative to GEMs
- Build and test prototype in beam test at FNAL
- ❖ Institutions involved in planar MPGDs for EIC Forward Tracker
 - Florida Tech, TU, UVa

Budget Request for Forward Tracker

This a combined funding request from FIT, UVa

FY2022: \$24,914

***** FY2023: **\$62,151**

eRD108 Budget Table

Institution	FY22 request	FY23 request
BNL	\$30,000	\$15,000
FIT	\$53,602	\$53,602
UVa	\$50,240	\$47,520
Saclay	\$21,000	\$36,000
TU	\$56,063	\$92,063
TOTAL	\$210,905	\$244,185

Backup

FLORIDA TECH Cylindrical µRWELL: RD51 VMM3a implementation into SRS

SRS from APV to VMM3a

PLL chip

128 channels with single chip

AC coupled 100pF

- Master or Slave
- **Embargo list countries**
- 1/2 W per hybrid
- Cooling negligible
- No zero suppression
- Ext. Trigger required
- Max trigger rate O(5kHz / hybrid)
- timing resolution O(~5 ns)
- No clustering logic
- fixed preamp gain 65mV/fC
- fixed peaking time 50 ns in peak mode
- Noise ca 2000 e- @ C_{det}~ 50 pF (246 e + 36e-/pF in peak mode)
- max. detector Capacity C_{det} ~ 50 pF
- fixed CSA gain -> dyn. range 50 fC
- linear up 4 MIPs

VMM 2019 + **HRS** connector

FPGA, Flash and uADCs

Digital

- 128 channels with 2 VMM chips
- AC coupled 470 pF @ 1M with TVS spark protection
- Master = Slave
- No embargo, BNL licence may apply to non-RD51 teams
- 3.5W per hybrid, 2 supply voltages P2~ 2V(3W),P1 ~3V(0.5W)
- Cooling important (convection cooler = standard, water pipes optional)
- Self-triggered with Zero suppression
- ART flag + 7 bit 1st hit address withing BCID period
- Trigger rates O(1 MHz /channel)
- timing resolution O(< 1ns)
- Neighbor detection below threshold for higher space resolution
- 8 different preamp gains 0.5-16mV/fC
- 4 different peaking times 25-200ns
- channel pulser programmable via 10 bit DAC up 1V
- analogue monitoring: selected channel sheper peak and time temperature, baselines etc, SRS hybrid readout via 12bit uADC, I2C
- Noise 500e- intrinsic, 1300 e- @ $C_{det} \sim 50pF$
- max. detector capacity C_{det}~ 2nF in high capacity mode
 - CSA linear dynamic range up 2 pC @ gain 0.5mV/fC

Hans.Muller@cern.ch

Cylindrical µRWELL: full size tracking layer

SBS U-V GEM tracker @ JLab: 2D readout with U-V strips

U-V Strip readout design:

⇒ U and V pitch of 400 μm, Vertical pitch: 462 μm

⇒ top (U-) strip: **80: µm**

⇒ bottom strips: **350 µm**

⇒ About 7k e- channels per layer

❖ Will rearrange connectors on the detector to have 4-slots on

❖ Avoid HDMI 5th data lines & reduced number of HDMI cable

